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1 Imtroduction

1.1 Open Complex Systems and One-Time-Only Events

Complex systems science has been applied in various domains where theory and
experiment meets with a medium of computation (e.g., [1]). Complex systems
science with external observation drastically advanced laboratory measurements,
and in some confined conditions succeeded to analyze the living phenomena as an
augmented phenomenology, without reducing the whole process into the parts
(e.g., [2]).

On the other hand, complex systems in real world cannot be fully simulated
‘ when the observation is limited from inside of the systems. When the system scale
| is larger than a controlled laboratory, when the sensor resolution is not sufficient
to reconstruct a predictable model, and when inherent dynamics such as chaos
~ produces principal unpredictability, we are forced to handle internal observation
(e.g., [3-6]). Internal observation is not only a compromise of conventional scientific
I methodology but also a subjective strategy to yield an effective description of the
system in dynamical functioning, where characteristic measures can only be defined

on the transient configuration of many-to-many bodies systems [7].
This working hypothesis becomes especially informative when a system is open
to external environment. In open complex systems (open systems in short), we
| cannot fully define a system’s boundary as it interacts with external environment
through time line. The configuration of subsystems is also fuzzy and change
temporally. The systems may not be possible to model with parent-slave relation
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in closed environment. The systems are basically unpredictable in a lon_g term by
internal observers, uncontrollable depending on the fragility to external dlsturb.ance
and complexity of interactions, and manifest one-time-only events that‘are neither
fully predictable by modelling nor reproducible by the real phepomenon Itse}f [8,9].
Whether it be technological innovation, social order reformation, natural disasters,
etc., transition of history in open systems has been always triggered by a new event
of unpredictable scale [10-12]. _

In such open systems lie greatest challenges of Ci:’)ﬂ.l]?le){- sy-stems: science, espe-
cially those concerned with the sustainability ol our civilization, that is left behind as
negative legacies of the modern scientific achieven.]ent.' For example, env1ropmental
problems, epidemic outbreak, life-course chronic dlseases-, techno_logy-mherlent
breakdown of social infrastructure, climate change, and associated somal—eclologlcal
transitions are predominant examples of one—time~0nly e?rents that require open
systems approach [13-17]. These tasks require 1%‘16 application of effective measure
by internal observers during the operation, as it cannot be halted, analyzed, and
experimented separately from the real world.

In coping with the needs of such global agenda, we need to explore novel
scientific methodologies that can be applied in open complex. systems. Based on
the past achievement of rigorous science with external obgerva‘tmn, we netlad further
extend the effectiveness of internal observers’ science in an open envu.ronment,
where real-world problems remain untouched. In contrast Lo th(? pe'rfectlon myth
of science seeking the control of the system as a dDmina.nt- objective, we r_ather
need to struggle in the real-world operation where the pred1ct1oq and control is not
always valid. How much can we attain with incomplete observation, heterogeneous
database, in unpredictable environment, with lots of new -eve'nts that have ne\fer
happened, but with the aid of fine mathematical theory, ubiquitous sensors, soc:]ql
networks of citizens, and massive computation power? What should we E?XPIOI'G.
during the time-limited operation of open complex systems, in order to survive and
create sustainability options in various forms? _ o

In this article, we investigate a conceptual framework of scientific explorat.lon in
open complex systems and develop a framework of exploration interfaces taking an
example in ecosystems management.

2 Open Systems and Closed Systems Approximation

Most of the natural systems can be described as open systems, and open systems
science includes a proto-scientific description ranging between phenomelnologj.f and
science. In a broad term, conventional science or closed systems science i an
approximation of criginally open systems with an miﬁcial boundary definition that
prohibits open interaction with further external environment. We need, howe'ver, to
clarify what is common with conventional scientific methodology and what is new
or explorable with the conception of open systems. For that purpose, we fomﬂlze
the comparison between open systems and its closed systems approximation that
already has specified examples in conventional science,
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Table 1 Conception of open systems in contrast to closed systems approximation in dynam-
ical systems

Closed systems approximation Open systems

Nature Reproducible events

Resilient feedback to controlled state

One-time-only events

Control objective Active transition to

alternative state

Infermation requirement
Methedology

Information quantity
Modelling and simulation

Information generation

Exploration of
management

Fig. 1 Conception of open systems in contrast to closed systems approximation in dynamical
systems. Left: Resilient feedback to controlled state in closed systems approximation. Right: Active
transition to alternative state in open systems. Blue lines indicate the potential of the environment,
in which systems depicted with orange circles are controlled and managed with red trajectories

2.1 Open Systems with Respect to Dynamical Systems

Dynamical systems modelling is one of the primary methods in complex systems
science [18]. Table 1 and Fig.1 compare open systems with closed systems
approximation in dynamical systems perspective. Dynamical systems, when used
in closed systems application, usually treat isolated systems with finite boundary
conditions, in which control of reproducible events with a feedback to a desired state
is the object of analysis. For such purpose, high-resolution modelling and simulation
with external observation is efficient, and controlling the phenomena requires the
information quantity in terms of information theory defined on a closed environment
without the dynamic exchange of components with external environment.

On the other hand, open systems as it is in real world contain important
dynamics in one-time-only events. Such phenomena cannot be externally controlled
nor can be finely predicted from past data. Instead, we need to cope with the
emerging phenomena and seek for an active transition to an alternative state with
strategic adaptation that resolves the conflict. This is not a resilient feedback with
a fixed definition of systems, but rather an expansion of the systems including
outer environment that leads to the redefinition of the boundary with transition
phenomena, in which effective information measures should be redefined. This
process is associated with both the exploration and management from inside of the
systems that precede modelling and simulation. The importance of exploration is
not to gain the information guantity with a fixed framework of observation, but
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to explore an extended definition of the systems that could encapsulate necessary
information for the management as a result. We call this process of _extendmg_the
systems definition and evaluate the information within to cope with irreproducible
events as information generation.

2.2 Open Systems with Respect to Machine Learning

Machine learning incorporates a wide forms of statistical modelling. in c.omp.}ex
systems [19]. Theoretically, non-linear statistical measures can classify any kind
of statistical dependency within the effective dimensions of feature space [20].
However, basic frameworks of machine learning are mostly based on closed systems
approximation. , - o
Table 2 and Fig.2 compare open systems with closed systems approximation
in machine learning perspective. While standard closed systems approaclhes define
the format of database and observation methods, open sygtems reah.ty do I.l()[
always guarantee the continuity both in the definition of data 1ter.ns apd its quaht_y.
Ubiquitous sensor network and citizen observation, for example, 1nev1-tab1y contain
biases in various scales. This situation has a common challenge V\_nth the frame
problem in artificial intelligence [21]. In the open systems reality where we
do not sufficiently know how to assume the effective boundary of the systems,

Table 2 Conception of open systems in confrast to closed systems approximation in
machine learning

Closed systems approximation | Open systems
Dynamically change

Framework of database | Fixed

Protocol Single algorithm Workflow of algorithms
Optimization Exploration and optimization
Tmplication Evaluation Ontogenesis

LT

Fig. 2 Conception of open systems in conirast to‘closed systems approximlzmon 1ndmact];1;z
learning. Lefi: Single algorithm optimization on a ﬁxed_database framBWQrk in clzlﬁse -syso ;.
approximation. Righs: Exploration and optimization with a workflow of a.lgon; ms_mw h[;{‘.h
systems. Blue rectangles correspond to the framewqu of. da.tabase.s or obsc.rva 10(;1., tmb o
algorithmic optimizations are performed with information criteria depicted as orange distribu
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evaluation with a single algorithm can be a blind measure with respect to the global
management goal including future utility. We need to prepare a portfolio of various
evaluations within available resources, with respect to a conceivable range of future
scenarios, in order to set up a try-and-error workflow that can maximally avoid the
operation to fail. This process is not a mere evaluation with an external algorithmic
measure, but a creation of novel suitable measures for future transition, in which
sense it can be represented as ontogenesis associated with information generation.

3 Open Systems Exploration: An Example
with Ecosystems Management

Based on the above conception of open systems exploration, we develop a concrete
example of the interfaces for the management of ecosystems as open systems.

3.1 Towards Dynamical Assessment of Ecosystems

Ecosystems functions and the services they provide are major sources of social-
ecological sustainability [22]. Although an increasing number of literatures reveal
general positive relation between biodiversity and ecosystems functions, local
assessment and its utilization depend highly on local initiative and industrial inertia
that devoid of appropriate scientific support [23]. We try (o convert the conventional
environment assessment protocol with the use of open systems science methodology
in order to achieve a dynamical assessment of ecosystems.

Figure 3 and Table 3 show the comparison between typical environmental assess-
ment and possible open systems extension. Usually, environmental assessment is
performed on a basis of static, fixed scoring framework that is derived from past
empirical studies [24, 25]. Current environmental studies are based on sensing
parameters and index species whose score in relation to environmental quality
is defined with past experience [26]. There is, however, little consideration of
possible future change of base-line ecosystems, especially regime shifts in response
to climate change and human perturbation in a global scale [27]: The number of
index species is pre-defined and limited. Observation methods are specified that
often require training by professional to assure the quality of data. By respecting the
quality of reproducible observation based on the past statistics, therefore limiting
the target systems in space and time, conventional assessment lacks in some aspects
the accessibility to a wide public and adaptability to abrupt environmental changes
where redefinition of the systems, descriptive index, and future insight should be
renewed on time.

To cope with an ever-changing open systems that lies in the nature of ecosystems
and associated human activities, we need to extend assessment protocols to an
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Fig. 3 Environmental assessment protocols in c3oserli systems approximation and. OPE(I]]:, :gsctlcxgj
exploration. Left: Typical conventional pmtocol. 'With closed s'ysten}s perspective i
[24-26]). To ensure the objectivity and reproducibility of observation, violer procgsiies aérfj:n emodi
fixed based on the past assessment data. Orange processes rlleed to respect pre-define et E!.l
that usually call for training by professionals. Right: Dynamical asse'ssment as a]proce.;f]sc ludepthe
systems exploration applied in ecosystems management. Hence the right protocol can 1

left one by fixing the corresponding parameters

Table 3 Characteristics of environmental assessment protocols in closed s.ystems approximation
(current environmental assessment) and open systems exploration (dynamical assessment)

Current environmental assessment | Dynamical assessment

Interface Static, fixed scoring framework Tnteractive, dynamical, on-the-fly
ICT

Index Pre-defined and limited Can be expanded and renewed by
observation

Observation method | Fixed Can be rno.dnﬁed, v.anoPs

Accessibility Mainly for trained professionals Open to wide public without
training

Evaluation Based on the past experience By renewal of the observation

scheme according to the focused
change

interactive and dynamical interface that can treat on-the-fly mgdiﬁcatwn of the
protocol itself. The acceleration of information sharing, processing, and angmen-
tation of interactivity can further modify the way of env1r0nmental asses_smefnt,
and contribute to the readiness of the management: Informatmg con?mumf:atu?n
technology (ICT) is expected to bring more dynamic and. reflexive dlmensm])c[n md
citizen science, allowing to fill the gap between crude, diverse data, a‘.nd_ refine

governance on multifunctional ecosystems [28]. Sincelmodel-base(.l prediction fr(::;l
physical to biological diversity still confronts complexity of ecological response [4),
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direct biodiversity measurement with human observation still plays an essential role.
The distributed measurement of biodiversity with interactive ICT has a potential
to shift the modality of indexing and scoring of species, from stable qualitative
description to dynamic quantitative data-driven assessment in real time. This
approach will expand current assessment in its observation network, data quantity,
and analytic tools on an integrated design of distributed ICT. By means of the on-
the-fly observation, reflexive redefinition of index species and its environmental
score becomes possible. Such dynamic reconfiguration of assessment criteria would
introduce more flexibility for rapidly adapting to changing situation. For that
purpose, we propose an iterative framework that comprises database, models, and
observation that can modify its relationship according to the actual change of
situation.

Observation of multi-scale systems such as society and ecosystems is internal
observation in principle. We cannot rely on empirical external measurement in terms
of data efficiency and analytical predictability [4]. Rather, we need to assure a
diversity of strategies to allow multiple actors to explore possible scenarios that
are rich enough to mitigate unpredictable change. Open systems exploration in
ecosystems management may not realize the reproducibility or predictability on
what will happen, but should seek for the capacity of exploration on what could
happen for a flexible planning of strategy portfolio. In short, we may fail to predict
rigorously but should succeed to survive in any possible situation. This is a common
principle with ICT-mediated citizen science in the roadmap of complex systems
science [28].

With this respect, structural design of exploratory simulation tools should have
emphasis on the diversity of the models, their parameters, and reflexive evaluation
of substantive variables for dynamic adaptability. Figure 3 (right) shows conceptual
framework of open systems exploration in ecosystems management: Distributed
measurements including the sensing of ecosystem agents collect massive data
with multiple and fluctvating criteria. A copious combination of analytical and
numerical simulators produce possible predictions in the background, which are
given feedback by the on-going measurement to evaluate the efficacy of each model
and weight the data variable in a reflexive workflow with multiple time scale, Not
only the effect of single variable but also synergelic effects between variables can
be explored with a variety of model functions. The observation network should be
reconfigured according to the efficiency of the actual management, in order to assure
sufficient diversity of substantive variables by eliminating useless ones and investing
for novel exploration. Here, the frame problem of determining sufficiently diverse
and cffective subset of variables is a consistent task to resolve. Cloud computing
resource and parallel-processed simulators would play essential role for the on-site
implementation.

For the example, data-driven assessment of biodiversity and associated environ-
mental quality can be realized with this framework. Taking environmental variables
and biodiversity as a database, a wide range of possible definitions of index
species and their environmental scores can be generated from simulators, which
will be selected to extract high-resolution assessment scheme as actual measurement
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continues. Steep change of biodiversity, environment, and observation network can
be immediately reflected to the assessment protocol by producing new possibilities
of scoring system with new inputs. We develop basic interfaces and models of such
protocol in the next chapters.

3.2 Example of Data Interface: Multi-partite
Graph Exploration

We develop prototypical interfaces for open systems exploration applied in ecosys-
tems management. As a testbed we use an ecological database developed in
Synecoculture project [29]. The database comprises biodiversity observation in
various Synecoculture farms and surrounding environment in Japan. To assess these
epvironments in open systems perspective, one needs to diversify the observation
until it can attain the saturation of the biodiversity measures related to the manage-
ment principles.

For this purpose, extensive link of data and related information is useful as an
initial hands-on interface. Figure 4 shows a multi-partite graph visualization of bio-
diversity records. The observation of plants and insects species are linked according
to the geographical cooccurrence with taxonomical relationships and observation
places. The users can explore on this graph to seek concurrent and/or allied species,
that could extend their observation activity and learn related ecological information.
This model can support extensive search for data registration within the framework
of cumulative past experience. It represents a simplest model for prediction in which
all past cooccurrences are superimposed.

Management requires wider choice in response (o a change. Ecosystems dynam-
ics under human perturbation is especially irregular and difficult to harness [30]. By
combining further information source such as climate data and ecological literature,
multi-partite links can provide wider choice triggered by actual observation when
a new data is recorded and connected in the web of multi-partite relations. The
real-time development of complex network of observation with automated link to
relevant information is a primary interface that complex systems science can offer to
open systems exploration. The evolution of complex network autonomously com-
bines observation and related knowledge, and extends the framework of possible
observation to provide collective suggestion between users.

3.3 Example of Suggestion Tool: Integration of Environmental
and Biodiversity Data with Symbolic Dynamics Analysis

Integration of biodiversity and sensor data is a fundamental task in data-driven
environmental management. While current studies fry to integrate biodiversity
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Fig. 4 Snapshots of multi-partite graph between plants (green), insects (magenta), biological
Faxonomy (orange), and observation place (yellow). The links represent the total cooccurrence
in the database (Synecoculture CMS [29])

records with remote sensing databases [31, 32], little has been investigated on a local
scale under direct effect of management. For example, in agricultural land, sensor-
based measurement and control of precision agriculture [33] is not connected with
local biodiversity observation. Natural farming practices based on local biodiversity,
on the other hand, rely merely on human observation and have little introduced
sensor technology [34, 35]. In actual management of farmland with both yield and
biodiversity promotion, one needs to consider the integrated aspects of biodiversity
and environmental conditions [36-38].

We propose a general framework to integrate biodiversity data based on human
observation and sensor data in general with the use of symbolic dynamics in
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dynamical systems [39]. Biodiversity data is a list of species names and related
taxonomy in correspondence to its metadata such as observation place and time.
This is a symbolic data that refers to the quality of the taxonomic profile of observed
biota. In contrast, sensor data are the numerical values of physical characteristics
measured on the environment with metadata. This is in general represented with a
real data type that refers to the quantity of each measurement item. The integration
of biodiversity and sensor data can be generalized into the following problem: What
is the characteristics of the symbolic dynamics of a measured ecosystem, in which
sensor data are the estimates of underlying dynamical system and biodiversity data
as the symbols that represent the states of the systems?

The reconstruction of symbolic dynamics with given biodiversity and sensor
data of an ecosystem is possible by matching the metadata such as place and
time between them. As a concrete example, we employ Voronoi diagram [40] to
segment sensor data phase space with biodiversity symbols. Figure 5 shows the
symbolic dynamics analysis of the Synecoculture biodiversity database during April
2011-March 2013 by matching with the corresponding meteorological data from
Automated Meteorological Data Acquisition System (AMeDAS) provided by Japan
Meteorological Agency [41].

We first performed principal component analysis to choose the linear combi-
nations of the most distinctive two-dimensional feature space of meteorological
parameters (Fig.5 Top Left). Based on the first 2 principal components space
(PC1-PC2), 30 previous days mean of AMeDAS data is segmented with Voronoi
diagram for each observation date recorded in Synecoculture database. Analysis
of observable species diversity (Fig.5 Top Right), niche estimation of particular
species (Fig.5 Bottom Left and Right) are possible on this model. For example,
when the meteorological sensor data of a new day are obtained, the model can
indicate what is the list of observed species in the past, and whether the observation
is already rich or poor in the corresponding partition. The segmentation can further
augment resolution as the observation cumulates. When the distribution of a species
is confined in a subspace of the Voronoi diagram, it is possible to estimate its niche
boundary by an interpolation. Significant correlation between estimated niches (e.g.,
order-wise correlation [42]) can provide suggestions that there might be underlying
ecological dependence between those species.

Theoretically, infinite sequence of finite biodiversity symbols can specify any
arbitrary trajectory of meteorological data with real-value precision, if the system is
deterministic and the partition is “generating” in terms of symbolic dynamics [43].
To enrich the suggestion based on the spatio-temporal structure, this model is further
accessible to mathematical analysis of symbolic dynamics that can treat complex
trajectories in dynamical systems including chaos.

Open Systems Exploration
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Fig. 5 Example of symbolic dynamics analysis of biodiversity and meteorological data. 7o

Left: Factor loading of principal components analysis (PC1 and PC2) of 11 daily metcorol(; iczﬁ
parameters (mean/maximum/minimum temperature, daily precipitation, day length, global qgo]ar
radiation, mean wind speed, mean vapour pressure, mean atmospheric pressure, méan huxn_{diry
mean cloud cover, and snow depth) in AMeDAS data. Top Right: Voronoi segmentation o’}
AMeDAS data PC1-PC2 space with Synecoculture biodiversity database for each 30 days mean

The Folor Tepresents the number of species observed in the same partition. Er)rrom Left: Exam Ie:
of mch.c estimation of Parnara guttata guttata (Bremer et Grey, 1852) (in p."ctur-e) on fhe
symbolic dynamics analysis. Boitom Right: Example of niche estimation of Sonéh’us asper (L.)

Hill (in picture) on the s i ; : il .. '
P WRI; = ) e symbolic dynamics analysis. Partitions where the species appeared are
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3.4 Example of Model Selection: Seasonal Segmentation
and Prediction of Biodiversity Observation

Besides the data interface and integration model that can provide interactive sugges-
tions to the observation, we further consider how to select a better predictive model
in a changing situation. We take an example of biodiversity prediction combined
with meteorological data in time development. This is again a prototypical model
for the integration of sensor and biodiversity data, but with consideration to the
refinement of real-time feedback on observation based on the model selection.

We employ hidden Markov model (HMM) as a primitive example of seasonal
segmentation of meteorological data [44]. We applied the standard forward—
backward algorithm for the inference of hidden states from the past AMeDAS data,
and the Viterbi algorithm to inversely infer hidden states with new data for each
observation. Figure 6 Top shows an example of seasonal segmentation of AMeDAS
data. Hidden states with the highest probability was chosen to associate the observed
species in Synecoculture database in the same day. The species diversity associated
with each hidden state is expressed as a discrete distribution on a set of observed
species name, with cumulative occurrence probability. Each time new species is
observed, the model acquires additional list of species for the corresponding hidden
state. The discrete probability distribution of species occurrence associated with
each hidden state can be used as a prediction model, when a new observation is
estimated to be in the same hidden state.

Based on the estimated models with the hidden states number ranging from 2
to 10, we performed a numerical experiment to evaluate the prediction capacity
of each HMM with respect to each 30 observations mean (Fig. 6 Middle). Each
model was evaluated with the standard likelihood function of discrete probability
distribution with respect to the observed species. The results show a dynamical
trend in the number of hidden states that gives the best prediction model. For
example, in Fig. 6 Bottom, the initial phase during April 201 1-January 2012 shows
an increase of the number of hidden state for the best model, which implies an
increase of model resolution for seasonal segmentation. Observation of new species
also tends to saturate as it is in winter time. Between February 2012 and October
2012, as the summer time reactivates the ecosystems, new species records become
more frequent which leads to the decrease of the model resolution (hidden states
number of the best model). The models go through a heuristic learning process of
biodiversity change with low likelihood for estimation, until it regains the resolution
and relative likelihood in the next winter time around November 2012-March 2013.
Since likelihood of the models monotonously decreases as the list of observed
species expands, relative increase/decrease of likelihood is important to characterize
the model resolution. When the relative increase of likelihood is associated with
the increase of the number of hidden states in the best model, model resolution
is considered to increase. During the observation, the diversity of observation
is maintained sufficiently high without producing statistical bias on new species
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Fig. 6 Example of model selection on an integrated model of biodiversity and sensor data
with hidden Markov model (HMM). Top: Example of seasonal segmentation of AMeDAS daily
mean temperature data with 3 hidden states. Estimated prebability of each state is plotted with
corresponding color. Middle: Numerical experiment of model selection based on the likelihood
of HMMs with hidden states 2 to 10, for each 30 observations mean. Likelihood of each HMM
is depicted as dots with colors that corresponds to the number of hidden states. Bottom: Time
development of new species appearance rate for each 30 observations and number of hidden states
of selected HMM giving maximum likelihood for prediction. Dynamic trend of model selection
and learning occur with the real-time feedback of observation

appearance rate (data not shown). Therefore, the numerical experiments imply a
dynamic model selection process during the real-time learning, in which the system
manages to select the best-in-time prediction model by compromising between the
adaptability to new observation and reproducibility of past statistics.
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4 Conclusion

4.1 Components Evaluation of Dynamical Assessment

We have conceptualized the methodology of open systems exploration based.on
open systems science, and developed prototypical interfaces with models takm.g
an example in ecosystems management, namely dynamical assessn}ent. Basic
properties of the example systems in view of incorporation into dynaﬁncal assess-
ment are summarized in Table 4. By generalizing these properties such as data
processing mode from batch to real-time, parameter segmentation type from simple
superposition to spatio-temporal segmentation, and model selection range from
single to group selection, respectively, these systems can be further developed and
integrated to augment a whole cycle of dynamical assessment. B
The correspondences between the processes in Fig.3 (Right) of dynamical
assessment and the utilization of each example model are summarized in Table 5.
The information generation proposed as the essential dynamics of open systems
exploration in Table 1 can further be explored in the following contexts:

Table 4 Achievement of basic system properties of three exam-
ple models, multi-partite graph (MPG), symbolic dynamics mod:e]
(SDM), and hidden Markov model (HMM) for the integration in
dynamical assessment

Properties MPG |SDM | HMM
Ex.1 Data processing mode Batch |Batch |Real-time
Ex.2 Parameter segmentation type | None | Spatial | Temporal
Ex.3 Model selection range Single | Single | Group

Table 5 Correspondence between dynamical assessment process in Fig.3 (Right) and multi-
partite graph (MPG), symbolic dynamics madel (SDM), and hidden Markov model (HMM)

Process in Fig. 3 (Right) | Process in example models

Input AMeDAS and Synecoculture database

Prediction Links in MPG

Suggestion from SDM

Prediction with HMM

Feedback Selection of effective information in MPG

Selection of time window in SDM
Parameters selection in HMM

Selection Selection of AMeDAS variables in SDM and HMM
Geographical and time window selection of Synecoculture database
Registration Modification of actual observation

Introduction of new observation method

Setting of new sensors
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— Multi-partite graph: Exploration of links and validation by observation

— Symbolic dynamics model: Field exploration of suggested species diversity,
niche condition, and its validation

— Hidden Markov model: Exploration of wider parameter spaces, model selection
with a real-time observation likelihood during operation

4.2 Example of Assessment Result: Generative Index
Species Scoring Systems

By gradually introducing the suggestion from prototypical models, environmental
assessment in Synecoculture project started to operate the initial steps of dynamical
assessment. Data-driven lists of index species candidates are obtained from the
field practice between August 2014 and July 2015 as in Table 6. These generative
index species, when connected with other database that refers to the quality
of environment such as yield, will serve as timely reconfigurable measures of
environmental guality in an ever-changing open systems surrounding the practice
and management,

Table 7 gives the list of observed species in Table 6. As an example of scoring
system generation, the environmental score of these species is calculated from the

Table 6 Numbers of generative candidates of index species extracted from dynamical assessment
in Synecoculture project

Consistent | Past | Novel
Date Place Suggestion | Observation | index index |index
2014/8/7 Todoroki (Tokyo) | 16 23 12 4 11
2014/9/13 Todoroki (Tokyo) | 36 35 22 14 13
2014/9/14 Oiso (Kanagawa) | 33 31 23 10 8
2014/11/22 Oiso (Kanagawa) | 17 16 8 9 8
2014/12/21 Oiso (Kanagawa) | 21 14 3 18 11
2015/3/28 Todoroki (Tokyo) | 22 21 4 18 17
2015/4/25 Todoroki (Tokyo) | 22 18 6 16 12
2015/572 Oiso (Kanagawa) | 62 26 22 40 4
2015/5/30 Todoroki (Tokyo) | 16 25 5 11 20
2015/6/13-14 | Ise (Mie) 96 64 23 73 41
2015/6/27 Todoroki (Tokyo) | 37 21 9 28 12
2015/7/19 Todoroki (Tokyo) | 37 24 11 26 13
2015/7/25 Oiso (Kanagawa) | 36 21 14 22 7
2014/8-2015/7 | Total 229 147 80 190 |99

The numbers indicate the number of species that were suggested from the prototypical models,
observed on field, and classified as consistent/past/novel index species according te the inclu-
sion and exclusion relationships between suggestion and observation: Consistent index species
commonly appeared in both suggestion and observation, while past and novel index species only
appeared in either suggestion or observation, respectively
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Table 7 List of observed species and its environmental score based on the edible species diversity

during the observations between August 2014 and July 2015

Y

Academic name Score Category
Morella rubra Lour. 37 4
Ficus carica L. 37 C
Zanthoxylum ailanthoides Siebold et Zucc. 37 C
Megacopta punctatissima (Montandon, 1894) 37 (G
Popillia japonica Newman, 1844 27 C
Graphosoma rubrolineatum (Westwood, 1873) 37 C
Mimela splendens (Gyllenhaal, 1817) 37 C
Microcerasus tomentosa (Thunb.) G.V.Eremin et Yushev 37 C
Ipomoea batatas (L.) Poir. 37 C
Ficus erecta Thunb. var. erecta 37 C
Lycaena phlagas daimio (Matsumura, 1919) 37 C
Orthetrum albistylum speciosum (Uhler, 1858) 37 N
Rubus fruticosus 37 N
Ziziphus jujuba Mill. var. inermis (Bunge) Rehder 37 N
Cyanococcus 37 N
Hyla japonica 37 N
Papilio protenor 37 N
Locusta migratoria Linnaeus, 1758 37 N
Uroleucon nigrotuberculatum 37 N
Aronia melanocarpa 37 N
Eumeta japonica Heylaerts, 1884 37 N
Actinidia polygama (Siebold et Zucc.) Planch. ex Maxim. 37 N
Hydrangea serrata (Thunb.) Ser. var. thunbergii (Siebold) H.Ohba |37 N
Camellia sinensis (L.) Kuntze 37 N
Citrus limon (L.) Osbeck 37 N
Oleandraceae 37 N
Eurema hecabe (Linnacus, 1758) 37 N
Allium chinense G. Don (variant Shimarakkyo) 37 N
Elaeagnacecae 37 N
Prunus avium 37 N
Fragaria x ananassa Duchesne ex Rozier 3 N
Epilachna vigintioctomaculata Motschulsky, 1857 37 N
Diptera Linnaeus, 1758 31 N
Metaplexis japonica (Thunb.) Makino 37 N
Neoscona adianta (Walckenaer, 1802) 37 N
Vitis spp 30.66666667 | N
Paederia scandens (Lour.) Merr. 29.5 C/N
Aralia cordata 275 N
Acca sellowiana (O.Berg) Burret 275 C/N
Trifolium repens L. 26.5 N
Rosa multiflora Thunb. 24.5 C/N

(continued)
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Academic name Score Category
Vitis ficifolia Bunge 23.66666667 C/N
Lycopersicon esculentum Mill. 23.33333333 C/IN
Acrida cinerea (Thunberg, 1815) 23.33333333 C/N
Solidago altissima L. 23 C
Morus 22.66666667 N
Perilla frutescens (L.) Britton var. crispa (Thunb.) H.Deane 22 N
Smilax china L. 22 C
Ginkgo biloba L. 22 C
Rubus hirsutus Thunb. 22 N
Angelica keiskei (Miq.) Koidz. 22 (&
Polistes rothneyi iwatai van der Vecht, 1968 22 N
Gonista bicolor (de Haan, 1842) 22 C
Ampelopsis glandulosa (Wall.) Momiy. var. heterophylla 22 C
(Thunb.) Momiy.
Scolia (Scolia) histrionica japonica Smith, 1873 22 C
Lycoris radiata (L'Hér.) Herb. 22 N
Momordica charantia var. pavel 22 N
Arlemisia indica Willd. var. maximowiczii (Nakai) H.Hara 22 CIN
Diaea subdola 21.66666667 N
Houttuynia cordata Thunb. 21.4 C/N
Asteraceae 19.83333333 C/N
Colocasia esculenta (L) Schott 19.8 C/N
Commelina communis L. 19.5 C
Formica (Serviformica) japonica Motschulsky, 1866 19.5 C/N
Dioscorea japonica Thunb. 19.25 C/N
Allium fistulosum L. 18.5 C/N
Allium tuberosum Rottler ex Spreng. 18.42857143 N
Coccinella septempunctata Linnacus, 1758 18.25 C/N
Pieris (Artogeia) rapae crucivora Boisduval, 1836 18 C/N
Daucus carota L. subsp. sativus (Hoffin.) Arcang. 18 C/N
Eurydema rugosa Motschulsky, 1861 17.66666667 C/N
Brassicaceae 17.54545455 C/N
Cucumis sativus L. 17.5 C/N
Poaceae 17.5 C/N
Equisetum arvense L. 17.4 C/N
Ericaceae 17 C
Parnara guttata guttata (Bremer et Grey, 1852) 17 C
Nonarthra cyanea Baly, 1874 17 &
Portulaca oleracea L. 17 i
Eurydema dominulus (Scopoli, 1763) 17 C
Arctium lappa L. 17 N
(continued)
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Academic name Score Category
Menochilus sexmaculatus (Fabricius, 1781) 17 N
Solanum tuberosum L. 17 C/N
Eriobotrya japonica (Thunb.) Lindl. 17 C
Amygdalus persica L. 17 C
Cichorium intybus 17 N
Eucalyptus globula Labill. 17 N
Formicidae 16.8 C/N
Brassica oleracea L. var. capitata L. 16.6 C/N
Glycine max (L.) Merr. subsp. max 16.5 C
Rubus trifidus Thunb. 16.25 C/N
Aedes (Stegomyia) albopictus (Skuse, 1894) 16 C/N
Apis mellifera Linnacus, 1758 16 C/N
Capsicum annuum “grossum’” 16 N
Nerium oleander L. var. indicum (Mill.) O.Deg. et Greenwell 16 &
Armeniaca mume (Siebold et Zucc.) de Vriese 16 N
Promachus yesonicus Bigot, 1887 16 C
Setaria viridis (L.) P.Beauv. 16 N
Cynara scolymus L. 15.66606667 | N
Papilio machaon hippocrates C. et R.Felder, 1864 15.66660667 | C/N
Dolycoris baccalum (Linnaeus, 1758) 15.66666667 | C
A. officinalis 15.6 N
Atractomorpha lata (Motschulsky, 1866) 15.5 &
Aphididae 15.5 C/N
Polistes jadwigae jadwigae Dalla Torre, 1904 155 C
Mentha suaveolens 15.5 N
Cornus controversa Hemsl. ex Prain 15.5 N
Akebia quinata (Houtt.) Decne. 15.5 . N
Solanum nigrum L. 1533333333 |C
Rutaceae 15.33333333 |C
Mentha canadensis L. var. piperascens (Malinv. ex Holmes) H.Hara 15.2 N
Helianthus annuus L. 15 C
Capsicum annuum L. 15 N
Nephotettix cincticeps (Uhler, 1896) 15 N
Lavandula officinalis Chaix. 15 N
Colias erate poliographus Motschulsky, 1860 15 N
Melissa officinalis 15 N
M. pumila 14.75 N
Nysius plebejus Distant, 1883 14.66666667 | C
Brassica oleracea L. var. italica Plenck 14.66666007 | C/N
Solanum melongena L. 14.66600667 | N

{continued)
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Table 7 (continued)

Academic name Score Category
Petroselinum neapolitanum 15 N
Rosmarinus officinalis 14.66666667 N
Pisum sativum L. 14.6 C/N
Zingiber mioga (Thunb.) Roscoe 14.5 C
Raphanus sativus L. 14 C
Aphis craccivora craccivora Koch, 1854 14 &)
Vicia faba L. 14 C
Dolerus similis japonicus Kirby, 1882 14 C
Coceinellidae 14 C
Fabaceae 14 C
Canna 14 N
Phytomyza horticola (Goureau, 1851) 13.66660667 (&
Eruca vesicaria 13.5 N
Aulacophora femoralis (Motschulsky, 1857) 13 C
Nephila clavata 13 N
Gryllidae 13 C
Xanthophthalmum coronarium (L.) P.D.Sell 13 G
Diospyros kaki Thunb. 13 C/N
Brassica rapa L. var. perviridis L.H.Bailey 13 C
Illeis koebelei koebelei Timberlake, 1943 13 N
Veronica persica Poir. 12 N
Takydromus tachydromoides ( Schlegel, 1838) 12 N
Armadillidium vulgare 10 N
Cycas revoluta Thunb. 10 N
Camellia japonica 10 N
Citrus japonica Thunb. 10 N

The category refers to C consistent index, N novel index, and C/N consistent or novel index
depending on the observation place in Table 6

number of edible species observed in the same date and place as an indicator of the
productivity. The environmental score of each species was calculated as follows:

1. Calculate the observation-wise environmental score of each species as the
number of edible species for each observation.

2. Take mean value of all observation to obtain the overall environmental score of
each species.

These environmental scores will evolve as the observation continues and can
serve as a data-driven predictor of edible species diversity. Although the scores are
not yet fine-grained due to the limit of observation numbers, future observations can
be evaluated using the generated scoring systems of index species, further refine the
scores and expand the list. The conditions such as time scale of the database that
generales a better scoring system can then be selected to optimize the predictability
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